Molecular Genetic Structure and Pathology of Pancreatic KATP Channels which are Metabolic Sensors of Insulin Secretion

Hilal Arıkoğlu 1 *, Dudu Erkoç Kaya 1, Hülya Özdemir 1
More Detail
1 Selçuk Üniversitesi Tıp Fakültesi Tıbbi Biyoloji AD, Konya, Türkiye
* Corresponding Author
EUR J BASIC MED SCI, Volume 2, Issue 2, pp. 56-67. https://doi.org/10.21601/ejbms/9180
OPEN ACCESS
Download Full Text (PDF)

ABSTRACT

ATP-sensitive potassium (KATP) channels are indispensable metabolic sensors for the maintenance of normal process in several metabolic pathways. Pancreatic KATP channels have also critical importance due to the central role in insulin secretion which is one of the essential effectors acting on glucose homeostasis. KATP channels is an octameric complex of Kir6.2 (inwardly rectifying potassium channel) inside and SUR1 (sulfonylurea receptor 1) outside of the channel. Correctly expression, assembling in the exactly conformation and properly trafficking to membrane surface of KATP channel subunits are necessary for channel functionality. Mutations or polymorphisms in SUR1 and Kir6.2 genes coding channel proteins effect insulin secretion by altering channel activity level and may cause important metabolic disorders like as congenital hyperinsulinemia, permanent neonatal diabet and type 2 diabetes dependent on resting the channel open or close. In this review, molecular genetic structure, role in insulin secretion and the pathology of pancreatic KATP channels were evaluated with a general view.

CITATION

Arıkoğlu H, Erkoç Kaya D, Özdemir H. Molecular Genetic Structure and Pathology of Pancreatic KATP Channels which are Metabolic Sensors of Insulin Secretion. Eur J Basic Med Sci. 2012;2(2):56-67. https://doi.org/10.21601/ejbms/9180

REFERENCES

  • McTaggart JS, Clark RH, Ashcroft FM. The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol 2010; 588(17): 3201-9.
  • Inoue H, Ferrer J, Warren-Perry M, ve ark. Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasion patients with NIDDM. Diabetes 1997; 46:502-7.
  • Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3 encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet 2000; 25: 406-9.
  • Clement JP 4th, Kunjilwar K, Gonzales G, ve ark. Association and stoichiometry of K (ATP) channel subunits. Neuron 1997; 18: 827-38.
  • Inagaki N, Gonoi T, Seino S. Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 1997; 409: 232-6.
  • Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel complex. J Gen Physiol 1997; 110: 655-64.
  • Tusnady G, Bakos E, Varadi A, Sarkadi B. Membrane topology distinguishes a subfamily of the ATP-binding cassette (ABC) transporters. FEBS Lett 1997; 402: 1-3.
  • Heginbotham L, Abramson T, MacKinnon R. A functional connection between the pores of distantly related ion channel as revealed by mutant K+ channels. Science 1992; 258: 1152-5.
  • Jan LY, Jan YN. Potassium channels and their evolving gates. Nature 1994; 371: 119-22.
  • Kerr ID, Sansom MS. Cation selectivity in ion channels. Nature 1995; 373: 112.
  • Proks P, Antcliff JF, Ashcroft FM. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter. EMBO Rep 2003; 4: 70-5.
  • Aguilar-Bryan L, Nichols CG, Wechsler SW, ve ark. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 1995; 268 (5209): 423-6.
  • Higgins CF. ABC transporters: physiology, structure and mechanism-an overview. Res Microbiol 2001; 152 (3–4): 205-10.
  • Bennett K, James C, Hussain K. Pancreatic β-cell KATP channels: Hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord 2010; 11: 157-63.
  • Higgins CF. The ABC of channel regulation. Cell 1995; 82: 693-6.
  • Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the a- and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1: 945-51.
  • Higgins CF. ABC transporters: From microorganisms to man. Annu Rev Cell Biol 1992; 8: 67-113.
  • Conti LR, Radeke CM, Shyng SL, Vandenberg CA. Transmembrane topology of the sulfonylurea receptor SUR1. J Biol Chem 2001; 276(44): 41270-8.
  • Ashcroft FM. Adenosine 5’-triphosphate-sensitive potassium channels, Annu Rev Neurosci 1988; 11: 97-118.
  • Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM. Clonning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 1995; 377: 344-88.
  • Nichols CG, Shyng SL, Nestorowicz A, ve ark. Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 1996; 272: 1785-7.
  • Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 1999; 61:3 37-62.
  • Yamada M, Isomoto S, Matsumoto S. Sulfonylurea receptor 2B and Kir6.1 form a sulfonylurea sensitive but ATPinsensitive K+ channel. J Physiol 1997; 499(3): 715-720.
  • Inagaki N, Tsuura Y, Namba N, ve ark. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J Biol Chem 1995a; 270: 5691-4.
  • Chutkow WA, Simon MC, Beau MML, BurantCF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 1996; 45: 1439-45.
  • Inagaki N, Gonoi T, Clement JP. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996; 16: 1011-7.
  • Isomoto S, Kondo C, Yamada M, ve ark. A novel sulfonylurea receptor forms with BIR (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J Biol Chem 1996; 271: 24321-4.
  • Vivaudou M, Moreau CJ, Terzic A. Structure and function of ATP-sensitive K+ channels. In: Kew J, Davies C (eds) Ion channels: from structure to function, 1st edn. Oxford University Press, Oxford, 2009: 454-73.
  • Park S, Lim BB, Perez-Terzic C, Mer G, Terzic A. Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 2008; 7: 1721-8.
  • Varadi A, Grant A, McCormack M, ve ark. Intracellular ATPsensitive K+ channels in mouse pancreatic ß cells: against a role in organelle cation homeostasis. Diabetologia 2006; 49: 1567-77.
  • Terzic A, Dzeja PP, Holmuhamedov EL. Mitochondrial KATP channels: probing molecular identity and pharmacology. J Mol Cell Cardiol 2000; 32: 1911-5.
  • Quesada I, Rovira JM, Martin F, Roche E, Nadal A, Soria B. Nuclear KATP channels trigger nuclear Ca2+ transients that modulate nuclear function. Proc Natl Acad Sci USA 2002; 99: 9544-9.
  • Ardehali H, O’Rourke B. Mitochondrial KATP channels in cell survival and death. J Mol Cell Cardiol 2005; 39: 7-16.
  • Hanley PJ, Daut J. KATP channels and preconditioning: a re-examination of the role of mitochondrial KATP channels and an overview of alternative mechanisms. J Mol Cell Cardiol 2005; 39:17-50.
  • Olson TM, Terzic A. Human KATP channelopathies: diseases of metabolic homeostasis. Eur J Physiol 2010; 460: 295-306.
  • Zerangue N, Schwappach B, Jan YN, Jan LY. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron 1999; 22: 537-48.
  • Lim A, Park SH, Sohn JW, ve ark. Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic β–cells. Diabetes 2009; 58: 2813-9.
  • Yang SN, Wenna ND, Yu J, ve ark. Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules. Cell Metab 2007; 6: 217-28.
  • Hu K, Huang CS, Jan YN, Jan LY. ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 2003; 38(3): 417-32.
  • Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006; 440(7083): 470-6.
  • Markworth E, Schwanstecher C, Schwanstecher M. ATP4-mediates closure of pancreatic beta-cell ATP-sensitive potassium channels by interaction with 1 of 4 identical sites. Diabetes 2000; 49: 1413-8.
  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 1997; 387: 179-83.
  • Baukrowitz T, Fakler B. KATP channels: linker between phospholipid metabolism and excitability. Biochem Pharmacol 2000; 60: 735-40.
  • Inagaki N, Gonoi T, Clement JP. Reconstitution of IKATP: An inward rectifier subunit plus the sulfonylurea receptor, Science 1995; 270: 1166-70.
  • Trapp S, Tucker SJ, Ashcroft FM. Activation and inhibition of K-ATP currents by guanine nucleotides is mediated by different channel subunits. Proc Natl Acad Sci USA 1997; 8872-7.
  • Arnoux JB, Verkarre V, Saint-Martin C, Montravers F, Brassier A, Valayannopoulos V, Brunelle F, Fournet JC, Robert JJ, Aigrain Y, Bellanne-Chantelot C, de Lonlay P. Congenital hyperinsulinism : current trends in diagnosis and therapy. Orphanet Journal of Rare Diseases 2011; 6: 63-76.
  • Glaser B, Thornton PS, Otonkoski T, Junien C. The genetics of neonatal hyperinsulinism. Arch Dis Child 2000; 82: 79-86.
  • Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 2005; 115(8): 2047-58.
  • Huopio H, Reimann F, Ashfield R, ve ark. Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 2000; 106: 897-906.
  • Pinney SE, MacMullen C, Becker S, ve ark. Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated withdominant KATP channel mutations. J Clin Invest 2008; 118: 2877-86.
  • MacMullen CM, Zhou Q, Snider KE, ve ark. Diazoxideunresponsive congenital hyperinsulinism in children with dominant mutations of the betacell sulfonylurea receptor SUR1. Diabetes 2011; 60: 1797-804.
  • Gloyn AL, Siddiqui J, Ellard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27 (3):220-31.
  • Flanagan SE, Clauin S, Bellanne-Chantelot C, ve ark. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2009; 30(2): 170-80.
  • Edghill EL, Flanagan SE, Ellard S. Permanent neonatal diabetes due to activating mutations in ABCC8 and KCNJ11. Rev Endocr Metab Disord 2010; 11:193-8.
  • Denton JS ve Jacobson DA. Channeling dysglycemia: ion-channel variations perturbing glucose homeostasis. Trends Endocrinol Metab 2012; 23(1): 41-8.
  • Huopio H, Shyng SL, Otonkoski T, Nichols CG. K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 2002; 283: E207-16.
  • Haider S, Antcliff JF, Proks P, Sansom MS, Ashcroft FM. Focus on Kir6.2: a key component of the ATP-sensitive potassium channel. J Mol Cell Cardiol 2005; 38(6): 927-36.
  • Thomas P, Ye Y, Lightner E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 1996; 5(11): 1809-12.
  • Nestorowicz A, Inagaki N, Gonoi T. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997; 46: 1743-8.
  • Aguilar-Bryan L, Bryan J. Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 1999; 20(2): 101-35.
  • Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng S. Identification of a familial hyperinsulinismcausing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem 2002; 277(19): 17139-46.
  • Marthinet E, Bloc A, Oka Y, ve ark. Severe congenital hyperinsulinism caused by a mutation in the Kir6.2 subunit of the adenosine triphosphatesensitive potassium channel impairing trafficking and function. J Clin Endocrinol Metab 2005; 90(9): 5401-6.
  • Magge SN, Shyng SL, MacMullen C, ve ark. Familial leucine- sensitive hypoglycemia of infancy due to a dominant mutation of the beta-cell sulfonylurea receptor. J Clin Endocrinol Metab 2004; 89: 4450-6.
  • Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 2004; 84: 239-75.
  • Henwood MJ, Kelly A, Macmullen C, ve ark. Genotypephenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. J Clin Endocrinol Metab 2005; 90: 789-94.
  • Yan F, Lin CW, Weisigier E, ve ark. Sulfonylureas correct trafficking defects of ATP-sensitive potassium channels caused by mutations in sulfonylurea receptor. J Biol Chem 2004; 279: 11096-105.
  • Flanagan SE, Patch AM, Mackay DJ, ve ark. Mutations in ATP-sensitive K+ channel genes cause transient neonatal diabetes and permanent diabetes in childhood or adulthood. Diabetes 2007; 56: 1930-7.
  • Garin I, Edgill EL, Akerman I, ve ark. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 2010; 107(7): 3105-10.
  • Stoy J, Edgill EL, Flanagan SE, ve ark. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci USA 2007; 104(38): 15040-4.
  • Greeley SA, Tucher SE, Worrell HI, Skowron KB, Bell GI. Update in neonatal diabetes. Curr Opin Endocrinol Diab Obes 2010; 17: 13-9.
  • Remedi MS, Koster JC. K(ATP) channelopathies in the pancreas. Pflugers Arch 2010; 460: 307-20.
  • Zwaveling-Soonawala N, Hagebeuk EE, Slingerland AS, Ris-Stalpers C, Vulsma T, Van Trotsenburg AS. Successful transfer to sulfonylurea therapy in an infant with developmental delay, epilepsy and neonatal diabetes (DEND) syndrome and a novel ABCC8 gene mutation. Diabetologia 2011; 54: 469-71.
  • Langmann T, Mauerer R, Zahn A, ve ark. Real-time reverse transcription–PCR expression profiling of the complete human ATP-binding cassette transporter superfamily in various tissues. Clin Chem 2003; 49: 230-8.
  • Miki T, Nagashima K, Seino S. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. J Mol Endocrinol 1999; 22: 113-23.
  • Akrouh A, Halcomb SE, Nichols CG, Sala-Rabanal M. Molecular biology of KATP channels and implications for health and disease. IUBMB Life 2009; 61(10): 971-8.
  • Gloyn AL, Pearson ER, Antcliff JF, ve ark. Activating mutations in the gene encoding the ATP-sensitive potassiumchannel subunit Kir6.2 and permanent neonatal diabetes N Engl J Med 2004a; 350: 1838-49.
  • Massa O, Iafusco D, D’Amato E. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum Mutat 2004; 25: 22-7.
  • Sagen JV, Raeder H, Hathout E, ve ark. Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 2004; 53: 2713-8.
  • Vaxillaire M, Populaire C, Buisiah K, ve ark. Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 2004; 53: 2719-22.
  • Flanagan SE, Edghill EL, Gloyn AL, Ellard S, Hattersley AT. Mutations in KCNJ11, which encodes Kir6.2, are a common cause of diabetes diagnosed in the first 6 months of life, with the phenotype dtermined by genotype. Diabetologia 2006; 49: 1190-7.
  • Gloyn AL, Cummings EA, Edghill EL, ve ark. Permanent neonatal diabetes due to paternal germline mosaicism for an activating mutation of the KCNJ11gene encoding the Kir6.2 subunit of the beta-cell potassium adenosine triphosphate channel. J Clin Endocrinol Metab 2004b; 89: 3932-5.
  • Edghill EL, Gloyn AL, Goriely A, ve ark. Origin of de novo KCNJ11 mutations and risk of neonatal diabetes for subsequent siblings. J Clin Endocrinol Metab 2007; 92: 1773-7.
  • Koster JC, Permutt MA, Nichols CG. Perspective in Diabetes, Diabetes and insulin secretion. The ATPsensitive K+ channel (KATP) connection. Diabetes 2005; 54: 3065-72.
  • Ribalet B, John SA, Weiss JN 2003. Molecular basis for Kir6.2 channel inhibition by adenine nucleotides. Biophys J 2003; 84: 266-76.
  • Antcliff JF, Haider S, Proks P, Sansom MS, Ashcroft FM 2005. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J 2005; 24: 229-39.
  • Shimomura K, Flanagan SE, Zadek B, ve ark. Adjacent mutations in the gating loop of Kir6.2 produce neonatal diabetes and hyperinsulinism. EMBO Mol Med 2009; 1(13): 166-77.
  • Slingerland AS, Nuboer R, Hadders-Algra M, Hattersley AT, Bruining GJ. Improved motor development and good long-term glycaemic control with sulfonylurea treatment in a patient with the syndrome of intermediate developmental delay, early-onset generalised epilepsy and neonatal diabetes associated with the V59M mutation in the KCNJ11 gene. Diabetologia 2006; 4911: 2559-63.
  • Slingerland AS, Hurkx W, NoordamK, ve ark. Sulphonylurea therapy improves cognition in a patient with the V59M KCNJ11 mutation. Diabet Med 2008; 253: 277-81.
  • Altshuler D, Hirschhorn JN, Klannemark M, ve ark. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26(1): 76-80.
  • Horikawa Y, Oda N, Cox NJ, ve ark. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26(2): 163-75.
  • Gibson F, Froguel P. Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians. Diabetes 2004; 53(11): 2977-83.
  • Gu HF, Abulaiti A, Ostenson CG, Humphreys K, Wahlestedt C, Brookes AJ, Efendic S. Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APMI) gene are associated with type 2 diabetes in Swedish caucasians. Diabetes 2004; 53 Suppl 1: S31-5.
  • Grant SF, Thorleifsson G, Reynisdattir I, ve ark. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006; 38(3): 320-3.
  • Inoue H, Ferrer J, Welling CM, ve ark. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. Diabetes 1996; 45(6): 825-31.
  • Hani EH, Hager J, Philippi A, Demenais F, Froguel P, Vionnet N. Mapping NIDDM susceptibility loci in French families: studies with markers in the region of NIDDM1 on chromosome 2q. Diabetes 1997; 46 (7): 1225-6.
  • Hart LM, de Knijff P, Dekker JM, ve ark. Variants in the sulponylurea receptor gene: association of the exon 16-3t variant with Type II diabetes mellitus in Dutch Caucasians. Diabetologia 1999; 42(5): 617-20.
  • Meirhaeghe A, Helbecgue N, Cottel D, ve ark. Impact of sulfonylurea receptor 1 genetic variability on non-insulindependent diabetes mellitus prevalence and treatment: a population study. Am J Med Genet 2001; 101(1): 4-8.
  • Reis AF, Ye WZ, Dubois-Laforgue D, ve ark. Association of a variant in exon 31 of the sulfonylurea receptor 1 (SUR1) gene with type 2 diabetes mellitus in French Caucasians. Hum Genet 2000;107:138–44.
  • Rissanen J, Markkanen A, Karkkainen P, ve ark. Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. Diabetes Care 2000; 23:70–3.
  • Florez JC, Burtt N, Bakker PIW, ve ark. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes, 2004; 53: 1360-8.
  • Laukaunen O, Pihlajamaki J, Lindstrom J, ve ark. Polymorphisms of the SUR1 (ABCC8) and Kir6.2 (KCNJ11) genes predict the conversion from impaired glucose tolerance to type 2 diabetes: the Finnish Diabetes Prevention Study. J Clin Endocrinol Metab 2004; 89: 6286-90.
  • Sakamoto Y, Inoue H, Keshavarz P, ve ark. SNPs in the KCNJ11-ABCC8 gene locus are associated with type 2 diabetes and blood pressure levels in the Japanese population. J Hum Genet 2007; 52: 781-93.
  • Chistiakov DA, Potapov VA, Khodirev DC, ve ark. Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 2009; 46:43-9.
  • Hani EH, Boutin P, Durand E, ve ark. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 1998; 41: 1511-5.
  • Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC. Association studies of variants in promoter and coding regions of _-cell ATPsensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med 2001; 18: 206-12.
  • Barroso I, Luan J, Middelberg RP, ve ark. Candidate gene association study in type 2 diabetes indicates a role for genes involved in β-cell function as well as insulin action. PLoS Biol 2003; 1(1): E20.
  • Gloyn AL, Weedon MN, Owen KR, ve ark. Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52: 568-72.
  • Nielsen EM, Hansen L, Carstensen B, ve ark. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003; 52: 573-7.
  • Love-Gregory L, Wasson J, Lin J, Skolnick G, Suarez B, Permutt MA. E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of type II diabetes in Caucasians as the PPARgamma Pro12Ala variant. Diabetologia 2003; 46: 136-7.
  • Schwanstecher C, Meyer U, Schwanstecher M. K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic -cell ATP-sensitive K(+) channels. Diabetes 2002; 51: 875-9.
  • Gonen MS, Arikoglu H, Erkoc Kaya D, Ozdemir H, Ipekci SH, Arslan A, Kayıs SA, Gogebakan B. Effects of single nucleotide polymorphisms in KATP channel genes on type 2 diabetes in a Turkish population. Arch Med Res 2012; 43: 317-23.